Data Scientist 옌

매일 발전하는 IT문제해결사

728x90

Programing 프로그래밍/Python 파이썬 19

[DeepLearning.AI TensorFlow Developer] C1W4-Assignment: Predicting the next word

Week 4: Handling Complex Images - Happy or Sad Dataset In this assignment you will be using the happy or sad dataset, which contains 80 images of emoji-like faces, 40 happy and 40 sad. Create a convolutional neural network that trains to 99.9% accuracy on these images, which cancels training upon hitting this training accuracy threshold. import matplotlib.pyplot as plt import tensorflow as tf im..

[DeepLearning.AI TensorFlow Developer] C1W3-Assignment: Improve MNIST with Convolutions

Week 3: Improve MNIST with Convolutions In the videos you looked at how you would improve Fashion MNIST using Convolutions. For this exercise see if you can improve MNIST to 99.5% accuracy or more by adding only a single convolutional layer and a single MaxPooling 2D layer to the model from the assignment of the previous week. You should stop training once the accuracy goes above this amount. It..

[DeepLearning.AI TensorFlow Developer] C1W2-Assignment: Implementing Callbacks in TensorFlow using the MNIST Dataset

Week 2: Implementing Callbacks in TensorFlow using the MNIST Dataset In the course you learned how to do classification using Fashion MNIST, a data set containing items of clothing. There's another, similar dataset called MNIST which has items of handwriting -- the digits 0 through 9. Write an MNIST classifier that trains to 99% accuracy and stops once this threshold is achieved. In the lecture ..

[DeepLearning.AI TensorFlow Developer] C1W1-Assignment: Housing Prices

Week 1 Assignment: Housing Prices In this exercise you'll try to build a neural network that predicts the price of a house according to a simple formula. Imagine that house pricing is as easy as: A house has a base cost of 50k, and every additional bedroom adds a cost of 50k. This will make a 1 bedroom house cost 100k, a 2 bedroom house cost 150k etc. How would you create a neural network that l..

[나도코딩] Python 코딩 무료 강의 (기본편) 정리 (3/3)

을 보면서 정리한 내용입니다. 클래스 1. 클래스 # # 마린 : 공격 유닛, 군인. 총을 쏠 수 있음 # name = "마린" # hp = 40 # damage = 5 # print("{} 유닛이 생성되었습니다.".format(name)) # print("체력 {0}, 공격력 {1}\n".format(hp, damage)) # # 탱크 : 공격 유닛, 탱크, 포를 쏠 수 있는데, 일반 모드가 / 시즈 모드. # tank_name = "탱크" # tank_hp = 150 # tank_damage = 35 # print("{} 유닛이 생성되었습니다.".format(tank_name)) # print("체력 {0}, 공격력 {1}\n".format(tank_hp, tank_damage)) # tank2_na..

[나도코딩] Python 코딩 무료 강의 (기본편) 정리 (1/3)

Python 기본 강의를 다시 들으면서 코딩테스트를 준비하려고 합니다. 마침 눈에 띈 것이 YouTube의 6시간 짜리 파이썬 강의가 있었습니다. 을 보면서 정리한 내용입니다. 자료형 1. 숫자형 print(5) # 5 print(-10) # -10 print(3.14) # 3.14 print(1000) # 1000 print(5+3) # 8 print(2*8) # 16 print(3*(3+1)) # 12 2. 문자열 print('풍선') # 풍선 print("나비") # 나비 print("ㅋㅋㅋㅋㅋㅋㅋ") # ㅋㅋㅋㅋㅋㅋㅋ print("ㅋ"*9) # ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 3. Boolean print(5 > 10) # False print(5 < 10) # True print(True) # True pri..

728x90